Regulation of Yorkie activity in Drosophila imaginal discs by the Hedgehog receptor gene patched

نویسندگان

  • Jacob D. Kagey
  • Jordan A. Brown
  • Kenneth H. Moberg
چکیده

The Hedgehog (Hh) pathway was first defined by its role in segment polarity in the Drosophila melanogaster embryonic epidermis and has since been linked to many aspects of vertebrate development and disease. In humans, mutation of the Patched1 (PTCH1) gene, which encodes an inhibitor of Hh signaling, leads to tumors of the skin and pediatric brain. Despite the high level of conservation between the vertebrate and invertebrate Hh pathways, studies in Drosophila have yet to find direct evidence that ptc limits organ size. Here we report identification of Drosophila ptc in a screen for mutations that require a synergistic apoptotic block in order to drive overgrowth. Developing imaginal discs containing clones of ptc mutant cells immortalized by the concurrent loss of the Apaf-1-related killer (Ark) gene are overgrown due, in large part, to the overgrowth of wild type portions of these discs. This phenotype correlates with overexpression of the morphogen Dpp in ptc,Ark double-mutant cells, leading to elevated phosphorylation of the Dpp pathway effector Mad (p-Mad) in cells surrounding ptc,Ark mutant clones. p-Mad functions with the Hippo pathway oncoprotein Yorkie (Yki) to induce expression of the pro-growth/anti-apoptotic microRNA bantam. Accordingly, Yki activity is elevated among wild type cells surrounding ptc,Ark clones and alleles of bantam and yki dominantly suppress the enlarged-disc phenotype produced by loss of ptc. These data suggest that ptc can regulate Yki in a non-cell autonomous manner and reveal an intercellular link between the Hh and Hippo pathways that may contribute to growth-regulatory properties of the Hh pathway in development and disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs.

The segment polarity genes hedgehog and engrailed are expressed in identical posterior-compartment-specific patterns in both Drosophila embryos and imaginal discs. We show here that the hedgehog protein is secreted, and it can cross embryo parasegment borders and the anterior-posterior compartment border of imaginal discs to neighboring cells that express neither engrailed nor hedgehog. In thes...

متن کامل

polyhomeotic controls engrailed expression and the hedgehog signaling pathway in imaginal discs

Polycomb group (PcG) genes maintain cell identities during development in insects and mammals and their products are required in many developmental pathways. These include limb morphogenesis in Drosophila melanogaster, since PcG genes interact with identity and pattern specifying genes in imaginal discs and clones of polyhomeotic (ph) null cells induce abnormal limb patterning. Such clones are ...

متن کامل

The regulation of hedgehog and decapentaplegic during Drosophila eye imaginal disc development

The hedgehog signalling pathway is a conserved mechanism which acts in inductive processes in both vertebrate and invertebrate development to direct growth and patterning. In Drosophila, the secreted Hedgehog protein acts as a signal to induce non-autonomous activation in adjacent cells of either the decapentaplegic or wingless genes (both of which encode growth factor-like molecules), via inac...

متن کامل

Drosophila cubitus interruptus forms a negative feedback loop with patched and regulates expression of Hedgehog target genes.

The Drosophila segment polarity gene cubitus interruptus (ci) encodes a zinc finger protein that is required for the proper patterning of segments and imaginal discs. Epistasis analysis indicates that ci functions in the Hedgehog (Hh) signal transduction pathway and is required to maintain wingless expression in the embryo. In this paper, the role of the Ci protein in the Hh signaling pathway i...

متن کامل

Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development

Reduced protein kinase A (PKA) activity in anterior imaginal disc cells leads to cell-autonomous induction of decapentaplegic (dpp), wingless (wg), and patched (ptc) transcription that is independent of hedgehog (hh) gene activity. The resulting nonautonomous adult wing and leg pattern duplications are largely due to induced dpp and wg expression and resemble phenotypes elicited by ectopic hh e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2012